Careers
Work with us
Financial Services | AI | Banking Automation | Digital Banking | Enterprise Automation

Using RPA in Banking

May 8, 2023
Using RPA in Banking

 

All banking or financial institutions can relate to the struggle of managing piles of structured and unstructured data daily. This task requires repetitive and manual effort from your employees that they could otherwise dedicate to high-value work. It can also be time-consuming and prone to errors, ultimately hampering your bank’s customer experience. Fortunately, automation technologies are proving to be a boon for the finance sector.

The finance domain is experiencing a major transformation, with banking automation and digitization at the forefront. According to a study by McKinsey, machines will handle between 10% to 25% of banking functions in the next few years, which can free up valuable time and resources for employees to focus on more strategic initiatives.

What is Robotic Process Automation (RPA)?

RPA is an automation technology governed by structured inputs and business logic. RPA in banking is a powerful tool that can automate repetitive and time-consuming tasks. It allows banks and financial institutions to gain a competitive advantage by automating routine tasks cost-effectively, fast, and without errors.

Banks, credit unions, or other financial institutions can set up robotic applications to handle tasks like capturing and analyzing information from documents, performing transactions, triggering responses, managing data, and coordinating with other digital systems. The possibilities for using RPA in finance are innumerable  and can include a range of functionalities such as generating reports, sending auto emails, and even auto-decisioning.

How RPA works

Robotic Process Automation works by automating repetitive and routine tasks that are currently performed manually. Software robots, also known as ‘bots,’ are designed to mimic human actions and interactions with digital systems. These rule-based bots can be configured to perform specific tasks, such as document processing, data entry, transaction execution, complete keystrokes, and more.

Once a bot is configured, it can be triggered to run automatically or on a schedule, freeing up human resources to focus on customer service or other higher-value or strategic activities. The bot interacts with the relevant systems and applications, capturing and analyzing data, navigating systems, and automating workflows as needed.

One of the key advantages of RPA in finance is that it is non-intrusive, meaning that it operates within existing systems and processes, without requiring any changes to the underlying infrastructure. This means that no changes are made to the underlying applications. RPA bots perform tasks in a similar manner  to employees- by signing into applications, entering data, conducting calculations, and logging out. They do this at the user interface or application surface layer by imitating mouse movements and the keystrokes made by employees.

This makes it easier to implement and reduces the risk of disruption to existing operations. As per Forbes, RPA usage has seen a rise in popularity in the last few years and will continue to see double-digit growth in 2023.Many people use the terms ‘RPA’ and ‘Intelligent Automation’ (IA) interchangeably. Both are banking automation technologies that improve efficiency, but are they the same?

Are RPA and Intelligent Automation the same?

No, RPA is not IA and IA is not RPA. While RPA is a rule-based approach for everyday tasks, intelligent automation uses Artificial Intelligence (AI) and Machine Learning (ML) technologies to automate more complex and strategic processes. IA encompasses a wide range of technologies which includes RPA. IA enables organizations to automate not just manual tasks but also decision-making processes and allows for continuous improvement through self-learning.

A combination of IA and RPA can unlock the true potential of banking automation. When RPA is combined with the powers of AI, ML, and natural language processing, it dramatically increases the software’s skills to execute advanced cognitive processes like understanding speech, carrying out conversations, comprehending semi-structured tasks such as purchase orders, invoices and unstructured documents like emails, text files and images.

Thus, RPA and its combination technologies are fully capable of taking your banking and financial business to new heights.

What are the benefits of RPA in Banking?

The global RPA market is projected to grow at a CAGR of 23.4%, from $10.01 Billion in 2022 to $43.2 Billion in 2029. Evidently, more industries worldwide are realizing the importance of RPA. Here are some benefits of using RPA in banking and financial institutions.

Improved Scalability

Robots can work faster and longer than humans without taking breaks. RPA can also be scaled to meet changing business needs, making it an ideal solution for organizations that are looking to grow and expand their operations and provide additional services.

Enhanced Compliance and Risk Management

RPA can help banks and financial institutions improve their compliance and risk management processes. For example, the software can be configured to monitor transactions for potential fraud and to ensure compliance with regulatory requirements. It can also inform the bank authorities in case any anomaly is found.

Improved Customer Service

RPA can enable faster and more personalized service to customers. For example, the software can be configured to handle routine customer inquiries and transactions, reduce wait times and improving the overall customer experience.

Increased Efficiency

RPA can automate repetitive and manual tasks, redirecting human resources to other higher-value and strategic activities. This can result in faster processing times, improved accuracy, and reduced costs. According to a study by Deloitte, banking institutions could save about $40 million over the first 3 years of using RPA in banking.

Better Data Management

RPA can automate the collection, analysis, and management of data, making it easier for banks and financial institutions to gain insights and make informed decisions. This means faster account opening or closing, loan and document processing, data entry, and retrieval.

Top Use Cases of RPA in Banking

RPA can be applied in several ways in the banking and finance industry. Here are some examples of RPA use cases in banking and finance:

Accounts Payable

RPA can automate the manual, repetitive tasks involved in the accounts payable process, such as vendor invoice processing, field validation, and payment authorization. RPA software in combination with Optical Character Recognition (OCR) can be configured to extract data from invoices, perform data validation, and generate payment requests, reducing the risk of errors and freeing up human resources.  This system can also notify the bank in case of any errors.

Mortgage Processing

Mortgage processing involves hundreds of documents that need to be gathered and assessed. RPA can streamline the mortgage application process by automating tasks such as document verification, credit checks, and loan underwriting. By using RPA to handle routine tasks, banks, and financial institutions can improve processing time, reduce the risk of errors, and enhance the overall customer experience.

Fraud Detection

According to the Federal Trade Comission (FTC), banks face the ultimate risk of forgoing money to fraud, which costs them almost $8.8 billion in revenue in 2022. This figure was 30% more than than what was lost to bank fraud in 2021 .  RPA can assist in detecting potential fraud by automating the monitoring of transactions for unusual patterns and anomalies. Bots can be configured to perform real-time ‘if-then’ analysis of transaction data, flagging potential fraud cases as defined for further investigation by human analysts.

KYC (Know Your Customer)

RPA can automate the KYC onboarding process, including the collection, verification, and analysis of customer data. RPA software can be configured to handle routine tasks such as data entry, document verification, and background checks, reducing the risk of errors and faster account opening, thus resulting in enhanced customer satisfaction.

Thus, using RPA in your bank and financial institution can not only save time and money but also boost productivity. Banking automation gives you a chance to gain a competitive edge by leveraging technology and becoming more efficient.

Blanc Labs Automation Solution for Banks

Blanc Labs helps banks, credit unions, and financial institutions with their digital transformation journey by providing solutions that are RPA-based. Our services include integrating advanced automation technologies into your processes to boost efficiency and reduce the potential for errors caused by manual effort.

We offer a tailored approach that combines RPA, ML, and AI to automate complex tasks, such as mortgage processing and document processing, allowing you to conserve resources, speed up decision-making  and provide quicker and improved financial services to your customers.

If your bank processes a huge amount of data everyday, we can help you. Book a discovery call with us and let us explain how we can increase the efficiency of your bank’s core functions. Our team will analyze your current processes and propose a tailor-made automation solution that can operate seamlessly and in conjunction with your existing systems.